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TAIL BUFFETING*

By G. Abdrashitov

An approximate theory of buffeting is here presented,
based on the agsumption of harmonic disturbing forces.
Two cases of buffeting are considered: nsuely, for a tail
angle of attack greater and less than the stalling angle,
respectively. On the basgis of the tests conducted and the
results of foreign invegtigators, a general analysis is
given of the nature of the forced vibrations, the possible
load limite on the tail, and the mcecthods of eliminatioan

of buffeting.

INTRODUCTION

The term "buffeting'" in its broad sense is applied
to the forced vibrations of any varts of the airvlane
under the aerodynamic action '0f tine wake in which such
parts are situated, though in general aeronautic practice
the term is restricted to this type of vibration of the
tail surfaces under the action of the disturbing wake of
the wing, the phenomenon occurring under certain flight
conditions. Devending on the values of the parameters
that characterize the wake, the tail is subjected to addi-
tional dynamic loads of variouns kinds which may lead to
its failure or otherwigse render normal operatiocn of the
airplane difficult.

The buffeting problem first took on a seriocus aspect
after the well-known accident of the Junkers airplane at
Meopham. The unugual circumsteances of the accident led
scientific organizations in England and Germany to under-
take detosiled investigations as to the possible causges
that may have brought it about. The English conducted
extensive laboratory investigations and arrived at the
conclusion that the most probable cause of the accident
was buffeting of the tail. In these investigations on
schematized models of the airplane it was accurately es-
tablished that at large angles of attack of the wing the

*Report No. 395, of the (Central Aero~Hydrodynamical Iasti-
tute, Moscow, 1939,
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tail situated in the aefoéynamic wake of the wing vibrates
intensely, the amplitude of the vibration increasing with
increase in the velocity.

A detailed investigation of the place of the accident
showed the presence of large rising air currents and the
following explanation was therefore given of the causes of
the accident: The airplane, flying horizontally with
great velocity, suddenly entered a region of strong rising
gusts as a result of which there was a sharp increase in
the angle of attack with the formation of flow sevaration
at the wing. The tail located in the wake was subjected
to intense forced vibrations which thus brought about the
accident.

To the investigation of this accident were also de-
voted the papers of a group of German investigators under
the leadership of Blenk (reference 1). The latter con-
ducted laboratory and flight investigations and also de-
tailed dynamic investigations of the same type of airplane
in the hangar. The laboratory investigations showed that
it was entirely possible for the airplane to enter the
buffeting state; but in actual flight, except during a
steep glide, buffeting of the tail was not obgerved even
once. For this reason, after analyzing all investigations,
Blenk arrived at the conclusion that the accident of the
JU 13 could not have been due to buffeting.

The importance of the investigations of Blenk lie in
the test procedure which he consistently employed. He was
the first to apply the moving picture camera to investi-
gate buffeting on the airplane in flight. A high-speed
camera was mounted in the pilot's cabin and enabled. the. -
simultaneous recording of the motion of the tail surface
tip and of a silk string placed ahead of it. Figure 1
shows a part of the film, taken during a steep glide on
the wing when the tail begins to buffet. On carefully
studying the photographic record, a relation may be estab-
lished between the fluctuation of the tail surface and the
silk string. The fundamental conclusiors from these tests
of Blenk are the following: .

'l. The tail surfaces at large angles of attack of the
wing enter a region of vortices springing from the inter-
section of the wing and fuselage, and in all these cases
vibration of the tail is observed; the vortices arise at
both sides of the fuselage and usually in an unsymmetric
manner. The vibrations of the tail-are of an irregular
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character but large amplitudes, as a rule, are rare and

"continue only for a véry short time.

. 2. Regular periodic vibrations of.the tail surfaces
are also entirely possible. For thig reason, the possi-
bility of entry into a resonance condition constitutes a

.redal danger.

3. The amplitudes increase very slowly with.the ve-
locity and 4o not attain their maximum values at any def-
inite velocities. ‘ '

As will be shown in what follows, not all results
obtained on the Junkers airplane tests may be generalized
snd accepted without any reservations, assuming all con-~
clusions as irrefutably proven. Even so, the work of Blenk
is the most thorough in this field of investigation.

In 1933 two papers devoted to buffeting investigation
appeared by Duncan (references 2 and 3). This author
studied the vivrations of an elastically hinged "detector!
having the form of a stiff airfoil attached at its root to
a streamline base viece. It should be said that such a
scheme, guitable for the determination of the freguency,
cannot give the corresponding amplitude of the acting
forces, and this is one of the chief defects of this method.
Moreover, the detector cannot vary its angle of attack.

In 1934 Hood (reference 3) carried out wind tunnel
investigations on the elimination of buffeting observed in
flight of a given airplane. Similar flight investigations
were conducted by Biechteler (reference 4) in Germany.
This completes essentially the fundamental literature on
buffeting.

In the routine testing of airplanes the buffeting
problem is sometimes practically encountered. At the pres-
ent time a large number of very simple devices are already
available for the elimination of-buffeting. It.should be
pointed out, however, that these devices are based only on
a qualitative estimate of the phenomenon,and the gquantita-
tive problems involved are not even approximately solved.
The difficulty of the problem lies -in the fact that the
actual nature of the amerodynamic wake btehind todies and
the laws of the dynamic processes that may occur in the
wake have not yet been established. From this fact follows
also the impossibility of an exact determination of the
magnitude of the forces required for making the tail undergo
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forced vibrations. The questions of the viscosity of the
fluid and the nonstationary character of its. motion,which
factors in the usual applied aerodynamics of. the airplane
may often be neglécted, here assume predominating impor+
tance.

The complete solution of the. buffeting problem thus
embraces, as yet, unsolved aerodynamic problems. For this
reason, it is necessary to seek indirect methods which,
while not encompassing the problem in its entirety, make
it possible to determine states which are critical as re-
gards accidents. The present paper is devoted to an ex-
position of these critical cases.

NOTATION
v flow velocity
P 1ift force
t tail chord
T t ime

Qg angle of attack of tail
Qy angle of attack of wing
Ay, critical (stalling) angle of attack of tail surface

Oye critical (stalling) angle of attack of wing

—L derivative of 1lift coefficient with respect to angle
oa of attack

—== derivative of moment of aerodynamic forces about the
oa elasticity axis of the tail with respect to the
angle of attack ' i ‘

w angular frequency of the disturbance forces
v number of vibrations per second -

‘L " half span of tail

EI stiffness of t%tail in bending

1
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61, gtiffness of tail in torsion
m - unit mass of tail
X5 distance of center of gravity from nose of profilé
o - distance of center of gravity from elasticiiy axis

at section considered

In unit moment of inertia of tail surface with respect
to its stiffness axis

o] dengity
Yy deflection of tail surface at given cross section
8 angle of torsion at given section

The x—-axis is taken along the tail spvean and the y-axis
at right angles to it.

1. SOME DATA ON THE VARE BEEIND A BODY

A large number of papers have dealt with the vproblem
of what occurs in the flow behind a body. It is, however,
impossible at the present time to point to even a single
vaper which might throw light on the problem of the wake
from the point of view of every-day practical needs. All

"of these papers concern themselves mainly with regions of

very siall Reynolds number; and at times, restrict them-
selves to results of purely .visual observations.

The behavior of light barticles moving: in the. flow
about a Dbody shows thst there is no absolutely dead region:
behind the body but thiat a complicated process of fluid
motion occurs. All bodies placed in such a wake are sub-
Ject to vibrational motiouns. From the point of view of
the well-known Karman theory, this may be explained by the
periodic shedding of discrete vortices from the body, there-
by producing the same type of velocity field =2nd also field
of force behind the body. In general, the buffeting theory
may be set up both on the basis of bure wave motion of the
fluid behind the body and on the basis of the vortex wakes
of Karman, both assumptions leading to the same regults.

In the first case, it is necessary to-know the amplitude
and fregquency of the wave and in the second, the freguency
and circulestion of the individusl vortices. For this
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reason, without restricting ourselves to any definite

scheme, we shall consider that behind the bodies a vibra-
tion process takes place for which two fundamental param—
eters must be known; namely, the amplitude and frequengy.

The problem of the wave amplitudes or of the circu-
lation of the separating vortices is as yet unsolved.
With regard to the frequency, & criterion has already been
established connecting the freguency of vibration with the

zelocity. This is the Strouhal. number (reference 5) given
b
- Vb

5¢ = —€~
where
v is the number of vibrations per'second
1) a linear dimension (for example the chord)
v the flow velocity

A large number of investigations are concerned with
the determination of the Strouhal number. There may be
mentioned, for example, the papers by Strouhal, Blenk,
Fage, Duncan, and others. The probtlem ig to determine
the vibration fregquency as a function of the velocity.
Fuoundamentally, three methods are employed for this purpose:
The first is the acoustic method by which the intensity or
pitch of the sound of thin streamlined wires in the stream
is measured,. since it has been found that the vibration of
the wires is due to the periodic shedding of vortices from
it. This method was employed by Strouhal and later by
Blenk. A difficulty should here be pointed out which un-
avoidably leads to an error in the results; namely, the
requirement of very thinm wires. The method reguires using
very thin wires in streams of very high velocity and sep-
arating from the general sound produced that sound emitted
by the wire - considerations which lead to a very compli-
cated setup including various sound analyzers. The test,
moreover, often becomes very complicated if any external
body emits a sound of the same type as the wire. The sec-
ond is the thermal method, using the well-known hot wire
anemometer; this method being the one widely employed in
English and American investigations. In the flow behind
the body is placed a very thin heated wire which, under
the action of the.variable flow velocities, changes its
electrical properties, from which *he freguency of vibra-
tion can be determined. Finally, the third method is
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that of measuring the frequency of the vibrations from

the behavior of various bodies placed
silk streamers,
fundamentally,

numbers for various bodies.
obtained by different authors.

vanes,

and so forth.

were obtained the data.

Plate

in the stream -

By these methods,

on the Strouhal
We shall present some results

Fage (reference 6) investigated in detail the’ flow
behind a plate and obtained the results given in the

table below:

Strouhal Number at Various Angles of Attack

for Flat Plate end Airfoil

]
a Plate 5 Airfoil
90 0.146 ' 0.15
60 .15 ; .154
50 15 | .15
45 145 .148
40 : .148 L1587
130 .153 .15
r 20 164 ! .152

anemometer.
plate is

The mean value of

‘The meapirements were made by the method of the hot-wire
the Strouhal number of the

a gqual to' 0.148 for a range-of, angle of attack of

30 to 90.
where

Blenk (reference 7) gives for the plate

Cylinder

)

§¢=0.18

In the case of the cylinder the résults of acoustic
measurements only are available in the literature,
the single exception of the work of Relf (reference 8),
where the results from different methods of measurement
are combined and a curve of Sy

(fig. 2).

Re

with

againgt

ig obtained

According to the results of Relf, for the
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cylinder 5¢ = 0.18; ©but according to Blenk §; = 0.207-.

Strouhal- gives, for the c¢ylinder, a value which agrees
with -that of -Blenk. - - .

Some further remarks should be made with regard %o
the Relf curve (eurve II, fig. 2). Theé numerical values
are not of special interest because they include only the
two extreme points of the curve and at the stalling por-
tion, two or three measurements that disagree with each

» other are given. A couparison, however, with the drag

curve (curve I) confirms the well-known fact in aerodynam—

"ics that the fregquency of the vibration is associated with

the width of the wake and the latter, as is known, depends
in turn on the position of the point of separation of the
flow at the cylinder. The point of sevaration at Re_ n.;t
recedes sharply and narrows the wake and therefore sharply
increases the frequency of the vibration so that if the
narrowing of the wake 'is not taken into account and every-
thing is referred to the diameter, it is possible at
Re,rig to obtain a discontinuity of the Strouhal number

as shown on the Relf curve.

Airfoil -

The papers of Fage, Blenk, Duncan, and others are
concerned with the investigation of the Strouvhal number
behind airfoil sections. The Reynolds number in these
papers does not exceed a value of the order of 200,000.
The results of Fage, after recomputation with reference
to the projection of the chord on the plane perpendicular
to the flow, give a value Sy = 0.15 for o, = 24 —-90°.
These results are shown in the table above.

The same results are obtained by Duncan from hisg
meagsurements with a detector. The investigations of Blenk
gave for wing orofiles the value st = 0.21.

Summarizicg 211 the above results, the following con-
clugsion may tnerefore be arrived at: The results of direct
measurements of the vibratioms of the flow give a Strouhal
number for the plate and airfoil equal approximately
0.148 to0 0.150. From acoustic measurements for the cylin-
der St = 0.207, for the plate 8t = 0.18 and for the
airfoil St = 0,21. From these measurements one important
conclusion is derived; namely, that the value of the
Strouhal number, taken over the middle range of resistance,

O,

ey
i

[ —— —
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practically has the same value for all bodies. This very
important fact greatly facilitates both the investigation
of the fundamental characteristics of buffeting and its
practical elimination. The extent to which these two
groups of values of St correspond to actuality will be
considered in detail in what follows.

The region of propagation of the disturbved wake is
no less important for the probtlem of buffeting. The prob-
lems associated with the wake have been extensively treated
in the literature. The fundamental method employed in od-
taining the ,results is that of measuring the total head
with a pitot tube, a boundary point of the wake being con-
sidered a point at which the dynamic pressure no longer
varies along ths normal to the direction of the velocity.

The curves of figure 3, taken from the paper by
Petersohn (reference 9), show that the downwash angle be-
hind the wing increases uv to ay o, and then with increas-

ing angle of attack begins to decrease rapidly and at a
certalin definite angle of attack entirely varishes. This,
as will be shown below, is of zreat importance in the prob-
lem of buffetiang.

Althotgh the width of the wake as obtained from the
dynamic pressure measurements is satisfactory,to some ex-
tent, for a numvoer of problems arising in practice, this
is far from the case as regards the problem of duffeting.
The curves given in the paper of Duncan (fig. 4) show that
the tail vibrates strongly beyond the wake limits obtained
with the usual pitot tube. The dotted curves in the figure
show the wake Doundary behind the body obtained with the
pitot tube and the continuous lines are those of equal buf-
feting intensity, that is, the linesg for which the ampli-
tude of tail vibration has the same value. If, for example,
over the entire 14ne 1, the value of the amplitude is taken
equal to unity; then at line 2 it has a value by only 30
percent legss than on the first. In general, on an actual
airplane the tail will alwdys be, at angles -of attack of
the wing above the stall, in the region of influence of
the vortices shed from the wing.

II. ACTION OF TEE WAKE ON THE TAIL

We assume that in the wake behind the wing is situated
a second airfoil. The question arises how an airfoil so
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situated.will behave, what locads it will experience, and
what motions it will execute under these loads. The

answer to these questions is fundamental in the theory of
buffeting. It follows immediately from the assumed vibra-
tory character of the wake that at each point of the region
behind the wing tne velocity, variable with respect to time,
gives rise to vertical velocity components ahead of a tail
set at variable angles of incidence. The latter give rise,
naturally, to variable forces and vibrational motion, K of the
tail. To solve the problem of buffeting, it is therefore
necessary to know the fundamental parameters of these forces,
,that is, the frequency and‘amplitude. The problem of un-
steady motion of a wing in a disturbed flow appears so com—
plicated that an attempt to solve it in its general form
holds forth little promise at the present time. It is
therefore necessary to make a number of assumptions by

whicih the problem may be schematized without impairing its
practicality. We shall assume that the stationary condi-
tion holds also for the case of buffefing; that is, we shall
consider that the general motion of the tail relative to

the flow may be subdivided into a large number of time in-
tervals within which the motion may be considered as steady.
Otherwise expressed, at each instant of time the aerodynamic
forces are determined by the Joukowsky theorem. Thisg isg
equivalent to the assumption that the 1lift curve of the air-
foil will remain the. game as for steady motion. Fron the
agssumed nature of the disturbing forces, it follows directly
that their maximum pogsible value is determined chiefly,

not by the wake itself but by the wing subjected to it. It
is known that the lift on the wing may be increased only

up to a certain limiting value Cy max characteristic of
the given wing section. That is to say, an additional angle
of attack arising from the vibratioaal character of the

wake may ircrease or decrease the 1ift of the tail surface
dependiag on whether or not the total angle of attack ex-
ceeds the angle Oy cpr- By taking for the amplitude of the
force the value corresponding to Cy max Wwe include the
most dangerous condition, the elimination of which automat-
ically assures safety in all the other cases. We shall
therefore assume that under forced vibrations, the value of
Cy max of the tail remsing constant. This assumption is a
direct consequence of the assumption of the stationary con-
dition of the flow. It follows that the character of the
motion will vary greatly, depending on whether the tail op-
erates below or above the stall region of the lift curve.

In the latter case, as will be shown below, the vibrations
will be unstabls.
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!
I We shall take a very simple example - the case of
: purely bending vibrations. From the theory of flutter
it is known that such type of vibrations will always be
damped, the wing itself acting to damp the motion. The
' case is otherwise if the wing vibrates in the range of
! the 1ift curve above the stall. Consider the schematized
; 1ift curve {(fig. 5). Let the tail surface move from any
‘ position A +to the position B- with any velocity. The
relative velocity of the air will then be opposite to the
direction of motion of the tail surface. The resultant
flow velocity formed of the sum of the horizontal and
above-mentioned relative vertical velocity will then form
a smaller angle with the tail surface than before, that is,
if the tail initially was at an angle of attack a_, then
in the course of its motion to the position 3B the angle
of attack is decreased to the value a,. 3But in this case,
as is seen from the curve, the 1ift force increases, that
is, 1is directed along the motion of the tail, The same
regsult is obtained for the motion of the tail to position
C. Thus the tail surface, operating in this range of the
1ift curve, becomes unstable and hence the amplitude of
the forces is of importance for the buffeting problem only
in the range below the stall, since in the range above the
stall the vibrations will diverge iundependent of the magni-
tude of the forces. It can be readily shown that the dan-
ger of this typve of buffeting for the airplane is real.
It is known that the downwash z2ngle of the flow above the
stall decreases with increase 1in the angle of attack of the
wing and at a certain angle of attack entirely vanishes.
The disturbing wake, traveling in the direction of flight,
immediately bringsg the tail surface veyond the stall be-
cause Ot oy 1s somewhat lower than oy .p.

We shall congider the simple case of the disturbdbing
forces acting s2ccording to the harmonic law. It should
j e noted that the case of periodic disturbance forces is
the most dangerous of all possivle cases, since such forces
may give rige to any amplitude of vibration and bring the
| tail into a resorance condition. From this point of view,
it seemwms prover to start our congideration of duffeting
with the case of harmonically acting forces as the simplest
i of periodic forces. We, therefore, shall set

Ax = A sin wT _
where A0 iz -the increment in the angle of attack produced
by the wake ahead of the tail; and A its amplitude.
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Then

AC
AP = 22¥ A sin wTpo t ¥V dx
Aa
or
3¢ o
dP = ——%L A sinwTp V° t(x) dx (1)
da

With the above assumptions, the equation of motion can be
very simply set up. It is clear that the equation will

be linear nonhomogeneous, its left side beiang similar to

the left side of the equation of wing flutter (reference 10)
and on the right side will appear the distributed load due
to the disturbing forces. On this basis we ghall consider
a few examples of possible cases of buffeting when the tail
operates below the stall.

Case of Purely Bending Vibrations

The equation of motion is of the form

2

2 2 oC 0
R <EI .@__5_7.>+ m(x) 0¥ 4 _¥ o Vt(x)éy- = Ap—\g’ t(x) Ve sin@T2)

dx 31°  aa a7 da

Thig is the usual equation of the forced vibrations of a
beam of variable cross section with loads uniformly disg-
tributed along the span.

Let EI = const,, m(x) = constg, t(x) = const, and set
oC, ' C
a; = —4L Pty k, = Ap °%% ¢
Ja oa

The equation will then assume the simple form

4 2 g
1 OF 4+ m O ¥ 4 a, V 9y = X, V sin 0T (3)
3 x* d7® - 9T

The integration of the nonhomogeneous and homogeneous
equations meets with the same difficulty; namely, the
determination of the functions fp(x) of the problem by
which the solution of the nonhomogeneous and homogeneous
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problems is developed in a series of the form

m - -
= y T 4
y Lo fa({x)Ea(T) (4)
where f(x) are the functions characterizing the form

of the vibration of the tail surface and £(T) gives the
change in deflection with time. This is the usual method
of Poisson for sclving a linear partial differential
eguation by assuming a solution in the form of the product
of two functions,each of which is a function of only one
variable; namely,the time and the position on the beam.

We shall rewrite equation (3) in the form

Iv ve . 2

Ely +my +a, Vy =k, V sin ©F (ar)
where
yiV = jiz, vy = éi?, y = S
3x 4 aTe oT
Jts general solution is of the form: ¥ =V + Vs where

y, is the solution of .equation (48'), with the right-hand
side sot equal to zero and y, tuae particular solution
satisfying the eguation.

v
¥ s

Let

it £

y, = £(x) £(T)
Then, as ig known, the homogeneous equation corresponding
to equation (3!') breaks up into two equations of the form

r . 4
y”-k f =0

~ g oo

and
. a.¥v .1 _ 2
E+ 2t +2NE =0
m
where .
k4 = A% m_
EI

The integral of the first of these equations is

f(x) = A, cos kx + B, sin kx + Cy cosh kx + D31 sinh kx (5)
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and of the second

-X,T )
E(T) = e~ (A, cos pT + B, sin pT) (8)
1 9
where  "X_. = =— —¥L p Vt; and p 1is the natural freguency
- . 1 2m aa
) . . c o s oCy
of the tail. It is seen that for positive values of L
foXo4

the free vibrations are damped and for negative values ~
that is, for Ot > Qat opr they are not damped.

The coefficients of expression (5) are determined
from the boundary conditions which they must satisfy:
namely,

for x = 0, y = o - 0 }
ox !
o r (7)
Jy _ 9%
= 1, , L = .Y =0
* ox?2 ox > }

leading to a8 transcendental equation of the form
cog k! cosh k1 = ~1 (8)

from which are obtained the following values of kU
characterizing the frequencies of vibration of the beam:

X, 1 kb kL kb
1.875 4,694 7,885 10.956

It is necessary to voint out one assumption which was
made in the above discussion; namely, that the modulus of
the velocity was equal to the velocity at infinity V.

The error involved is of the order of the sgquare of a small
value (A®a). This assumption will also apoly in what
follows.

The particular solutior of the nonhomogeneous equation
is sought in the form

g, = L(T) £(x) (9)

We set
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BCy v
Y pt
a. v p k
— B, = By o o= _hi= o ; ok, = -
EI Bl EI . EI
Equation (3') then becomes
eIV ¢ o4 a,f(x) ¥+ efl = k, V2 sin o7 = p (x,7) (10)

The right~hand side, in general, is also a function
of the time and of the coordinate of the beam axis and,
as is known from the general theory, it may be assumed in
the form of a product

p(x,7) = £(x) H(T) (11)

Substituting the above eguation in (10) and dividing by
f(x), we obtain

agf + ol + k%t = H(T)

= cownst sin w7 (12)
. Iv 4, _ .
where the equation f ~ k' f =G wag made use of for
determining riv,
Setting
{ = A cos T + B sin OT (13)

we obtain
= ~AW gin WT + BW cog WT; E = - Aw® cos WT - Bw? sin WT
Subgtituting (13) in (12) and equating the coefficieants

of the gsine and cosine terms, we obtain the system

-a, 4 0® + cBo +kx*a=0 L
o . ' (14)
-B agw” - cA w +k B = congt = hJ
or
A (x* - aguﬁ)'+ Bew = O, ~Acw+ B (k% aauF) =nh
whence
4 2
he w .. nlk - ap W)

(k% - azwg)g + c@p? (x* - azwa)a + cZw?
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We asgume
A =T sgin §, B = U cos §

It is then readily seen that

U= v A% ¥ B® = (15)

JE? - a,0%)° + o0

whence

f(x)h sin(wt + 8) (16)

f(x) U sin (WT + §) =

«//(k4 - ay0’)? + cfuw?

The maximum deflection of the tail will occur for

We shall then have

Y2 pmax T /= T (17)
VBt cw
Remembering that
I a 2
W = ]_i__ = ._.1_{._.._.
an '\/—ag
we obtain )
f(x) b (fx) h
Y2 pax 2 - - (18)
c—= ck EL
= m
/5
Sinc« bk = const, vZ; c = constg V;
we shall have )
'V‘
ya nax = const f(x) —— (19)
L
« m

that is, the value of the deflectionsg in the case of res-
onance 1g determined nct only by the elastic proverties
of the tail but also by the velocity o. the flow. TFor
this reason, it is not possible, in general, to speak of
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the danger of resonance in buffeting without specifying
the velocity at which this resonance occurs.

The same result may be arrived at much more simply
by applying the method of Galerkin to the solution of
equation (3). We shall first make two reservations which
follow immediately from the nature of the problem and
which very much slmplify it. 1In the first place, we are
not required to find the complete integral of the equation
of motion for the simple reason that the buffeting occursg
at below-critical velocities for which reason the free
vibrations will be damped and will therefore not directly
concern us. We shall, therefore, geek only the forced
vibrations of a fregueney equal to that of the acting
forces. In the second place, we ghall not concern our-
selves with the investigations of the tail vibrations of
the higher harmonics, this case being of no practical
interest since it is then necessary to take into account
the formation of nodes. It is known that the frequency
of the vortices of actual airplanes lies within the range
of natural freguencies of the tail gurface and for this
reason the attainment of flow freguencies equal to the
higher harmonics of the tail surface would regquire in-
creasing the velocity almost three times, which in the
given case is practically impossible. We shall, therefore,
coasider the form of the forced vibrations as coinciding
with the form of vibration of the fundamental frequency.
The eguation of vibration of the tail with variable cross

section and rigidity for the case of purely flexural vi-
bratioas is

D2 w1 258 4 m(x)2RL
ox® aaxz/ 36 T
v Yy _ ¥ 2 . 1
+ 3o th(x)—a:r- = A—S—d—- pV7t(x) sinuwT (31)

Agsuming that the functions y(x) are already known, we
seek, according to the general theory, a solution in the
form of the product

y = £(x) £ (7)

Subgtituting in equation (3') and applying the method
of Galerkin, we multiply both sides of the equation by
f(x)dx, integrate over the entire half-span, and obtain

[ 2 . pl
E(be s EIE_E\ f(x)dx +EJf m({x) £ (x)dx
ax*® ax?
. 3 ¥ sae ot
+ & 2L pv/ t(x) £%(x)dx = AL p v°/ t(x)f(x)dx (20)
3a . . sa .

o]
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It is readily shown fraom the boundary conditions which f(x)
must satisfy that

d‘i:(El 4f(x) )f(x)dx-fEI( )
0

Integrating by parts the integrel on the left-hand side

[ (88 o (58} o | — [ 2 ()

The first term, on account of the boundary conditions, is
equal to zero. Integrating the second again by varts, we
nbtain '

fi(E,tH’)df i =_Elz){22_i|+flﬂdz’dzfd _fE1<df>dx

Setting

jE](%;—C)zdx=a; fm(x)f’(x)dx=b;

%—C;'-pft(x)f’(x)dx=c, A~pV’ft(x)f(x)dx d.

equation (20) assumes the form
at-(x)-+ b E - cf =dsin or;

é'—l— —|— _4a - sino. (20)
Assunming

£ = A cos ot | Bsin o,
we obtain

— — R c_
—AwZCOSm'_I:—BNsmm—TAmsinwt—l—
d
—|—- Bu)cosu)':-[— Acosm-{— Bsmw-:._Tsmuw,

Equating the coerficients of the cosine and sine terms, we
find

ﬁ(-b-—w)‘f‘ —~Bow=0; -—A—o)—|—B/——m2)=%. (21)
whence
— b b - b
A: ; B=" b
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Setting A= U-sin 3; B=Ucos3,
where U:VZL}_E!; tgaz-é-,
B
we obtain y=f(x)-Ussin(os43). ~ 22)

rhere &8 1is vhe phase angle

I
f(x)-A (E”-p V“ft(x)j(x)dxsin(m-:—}-a)

aC, l . 2
fz (0 () <f El( dx \) <57 PVJO t(x) ffdx wj
0

m(x)f’dx folm{x)ﬂdx

where the expression

!
fm(x)-fgdx
[

gives the neturzl frequency of the flexural vitrations of

the beam at any cross section.
In thhe case of resonance, we shall have

A —_pwft(x)f(x)dx

4
AV [ t(x) f(x)dx
Yuax =f(x) =f(x) —— - (29
, %?P"f ) dx o [t(afax

j 'm (%) 2 ()dx ; 2 0

0 6} m(x) f(x)dx
But

) == j . (25)

mf2 dx
hence equation (24) can be written in the form
AV [ (0 f(x)dx
Ymax = f(x) JO )1 () . (26)
ft(x) frdx JEI df

m (x) f* (x) dx
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For EI = const,; m(x) = const,; t{x) = consty;
we obtain 1

f{x)A Vtgf f(x)dx

const fV

oG T

0 J'f dx

Ymax

that is, the same result is obtained as by the usual
classical solution by the method of Poisson. The simplic-
ity of the obtained formula is such that no explanations
with regard to the value of the individual parameters ars
required. It is important to note only one point; namely,
that in the case of resonance the values of the deflections
do not depend on the aerodynamic proverties of the tail
itself. This result follows from the assumdtion of the
stationary theory.

Case of Purely Torsional Vibrations
In the case of purely torsioaal vibrations, the above
line of reasoning remains exactly the same as for the
purely flexural vibrations. We shall oresent only the

final result.

The eqguation of motion for torsional vibration is of
the form '

e aC =3 2‘- X
-_Q_< GI 59> + 1,99 - _EE o Py te + E(‘i - o __IL__> 98
|
!

T8 3T
9 x P3x an v N4 t 1GiEEE
i da
= M(x) sin @T (27)
Setting
= o(x) {(1) (28)

and applying the %ethod of Galerkin, we obtain
J ¥ (x) o(x)dx sin (07 + €)

{ v a \2 oC 2l 2 2 2
A - SIEE 2 dx - a +
Lof GIP(dx/ dax J[ Sa o ve w x Q) J'Imco x} s
0

(29)
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where 1 / . \
, o - oaf . a2
Y o= _EEE p Vt |3 - Xo - _gg_d) o dx
. o

As is seen from formulas (29), the aercdynamic character-
igstics of the tail surface itself affect the character of
tne vibrations. In the first place, there is a decrease
in the natural frequency of the vibratioas by the amount

that is, tliere 1v a droo algo in the velocity at which
resonance anpears. In the second place, in the case of
resonance itself the deflections, in contrast to tnose of
the flexural vibrations, will depend on the aerodynawic
chiarscteristics of the tail section, as is shown by
oquation (29).

I11. THEZ CASEZ OF TWO DEGREES OF FREEDOM

As 1s kunowx from tue theory of wiang vibration, vibra-
tioas of a wing with ouneg degree of freedom are iampossible,
the flexural vibrations necessarily giviag rise to tor-
sional vibrations and vice versa, that is, the tail sur-
face vibrations will always ve torsiounal-flexural. Thisg
is due to the noacoincidence of the points of avplication
of the elasticity and inertia forces. It is a2 guestion
only of the relative imvortance of each of these tyves of
vibrations ia the general system of vibration. Te shall
therefore cousider the motion for the casa of two degrees
of freedom, that is, siwultasneous vivration in torsion
and bendiang.

The system of equations is of the_ foru
—§: (EI( )~l\ + m(x)——l mOé—,g
ox ax ar? oT”
oGy

/3 x 36 dy
- 2o v t[e + & K—- - —3> AR --3]: p(x) sin wT; (30)
Ba v \4 t/ ar v orF
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2 2
a /.. a8\ - o 220
°{er, <) - 'mol< + 1, 22
aE( P a%) mo5rE m 372

/
36 g{ : x \ a6 .
aa ‘ Vie % 3c.. ‘ot ¥V oar

[ 16——2E )
o
where
c.. ac 2.2
p(x) = 2255 v%t(x); (=) = a27mE, v742 (x)
oa oo

a

by¥ + Dbial 4+ byg¥ 4+ byl + b+ by

11

This system of two linear partial differential eguations
may be integrated only approximately. As hag alresdy heen
pointed out, the difficulty of integrating nonhomogeneous
equations is the ssme as that for homogeneous, since the
problem in both cases reduces to finding the functions
y(x), o(x) and expanding them in absolutely and uniformly
converging series in each case. The golution of this sys-—
tem, we shall seek, in the form

y = f(x) £(7); B = o(x) ¥(T) (32)

Substituting these functions in the equations and multiply-
ing the first by f(x)dx, the second by o(x)dx and inte-
crating from ¢ to 1, we obtain

£ + algg +toa v + a14¢ + alsw + alSE a sin T 1\
4 (33)

= b gin wWT [
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where

! d2f 2 ! !
,«.,a“:‘—'fEl (@> ax; a12=Jm(x)ﬁdx; a13=———fmcf(x)dx;
0 ’ (] 1]

! i
ac ocC
==V [t2(0f0dx  me=—gZeV I (% ——%}q»(xyf(x) dx;
0 0

oC, . . : de\?
Ao ="3; prtfzdx; a=fp(x)f(x)a'x; bn=f Gl, (EE) dx:
0 ]

0

1 I 1
) dC,
b12=/m°f(x) dx; b13=f1m @*dx; by=—pV? f——am' 2ot dx;
o
0 0 0

lacm; G l
o=V [ rfeds b= [1e(dx.
0 ]

We assume
t=Acoswt+ Bsinwt; ¢=Ccoswt-+ D sinwr,

since there is always a phase difference between the
forces acting on the tail and its displacements. Sub-

stituting these expressions in the obtained equations,
we ghall have

a,, (A cos ot - B sinwt) 4 a,, (— 0* Acos ot — w® B sin wt) 4
~+-a,, (—o? C cos vt —w?B sin wt)--a,, (C cos vt -+ D sin wt) 4
+a,,(— o C sin vt o Dcoswt) 4 a;; (—oAsinor 4 o B cos wt)=asin ot ;
b,,(C cos ot D sinot) 4 b, (—w? A cos o= — B sin wt)
4 b5 (— 02 Ccos vt —-0? D sin ot) - b, (Ccos ot 4D sin wt) 4
by (—o Csinot 4o D cos wt) - by (— A w sin wt - B cos t) = b sin wr,

Bquating the coefficients before the same functions,
-we obtain

A (ay — a0+ Bag o "I‘E(au—ala ©) 4 D a,,=0;
—Aa, 0+ B(a, —a; 09— C a0+ D(a, —aj o) =a;
— Aby, w7+§b1b<o—|—5(bu — by 0t ~+by,) ‘I_Ebm‘”:();
~ Abyo—B by, w?—C by, 04D by, — by 0® +b)=20.

23
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whence
—_ A — A
A =3 B= =3
A? A
— A = A
A A
where
; )
Ay — Gy ©° ago . Q — Qv Q» .
— QW Ay — Gy ®° Ao Ay — Q10"
== 2
A — b0 b . by, — by 0+ by, by .
—bwm —‘blg‘”' - b]:,(” bll—bmu’-—*_bl-t
2
0 a, w Qg — Gy ® Ay © .
A= @ a,; — G;,0° — e A1y —— Q3@
! 0 bygw by — by 0° by 0 by w .
b —b”w2 — b0 by, —byg0 +b14 ]
a;, — @, »* 0 Ay, — Ay 0° Q)5 0 2
A a,,w a — Qv Ay — Q3 ®
27— by, 0 0 by, — by, 0+ by, bigo .
— by, b — by byy — by -+ by,
Ay — Ay ©° A © . 0 Ay O ,
Avee | T 0@ S Tl S TR a Ay — Q30
17| — by 0? b0 i 0 139 _
bygw — by, 0* b by — by 0?0y,
2
a,, ~— Qyo ©* aig® Gyy — Q13 @ 0
A — — Q@ ay, — ap, 0* — QY a
R ey 2T bgo by — by by, 0
— b, w —b,, 0? — b0 b

In the entire discussion above, it was assumed that
the functions f(x) and o(x) are known. Actually,
their determination presents one of the mosgt difficult
problems of present day mathematics. There is a small
nunber. of particular cases for which these functions can
be given in strict form. 1In all practical cases, they
are generally found by approximate methods and the re-~
sults later checked by experiment. In the case of forced
vibrations there is one advantage; namely, that for the
determination of the amplitude it is not required to use
the initial conditions without which iz the homogeneous
problem the amplitude cannot be determined.

As is known, we geek the solution of both the
homogeneous and nonhomogeneous equations in the form of

the product
y=[fx)L().



NACA Technical Memorandum ¥No. 1041 26

For f(x), in both of the above cases, there are a suffi-
cient number of boundary conditions, but for ¢ in the
case of the homogeneous problem it is necessary to specify
initial conditions and in the case of the nonhomogeneous
praoblem £ is entirely determined by the disturbance
forces. Thus, multiplication of the right-hand side by
any constant faetor does aot introduce any complications
-in the determination of the amplitude,and the computation
can always be carried through to the end. Thus, it is
possible to take Af(x) for f(x), since A .can enter
in the coefficient £.

As a first approximation, we asgsumed that the form
of vibration of the tail in the flow isg the same ag in the
case of vibrations of the same gurface in a vacuum. On
the basis 0of these agsumptions, the buffeting computation
of the tail was made with the data presented in the book
of BE. P. Grossman (reference 10) on the assumption that
the wing chord was equal to & meters and the maximum aagle
of attack that conld arise from the effect of the wake wss
egual to 5° for vibration with two degzrees of freedom.

The curves (figs. 6 and 7) of the change of maxiwum
deflections and torsional sangles theoretically outained,
show the interesting characteristic which: is observed also
in nractice; namely, that the forced torsional wibrations
start only when the frequencies of the disturbing forces
approach the frequencies of the nmstural flexural vibratioas
of the taill, while the fleaural vibrations strongly iun-
crease with incresse in the flow velocity.

- In the light of the theoretical results obtained, it
is useful to recall the followiae fact. Ia consideriang
the failure of the tail of the JU 138, the.- Baglish investi-
gators arrived at the conclusion that the failure arose
from the flexural stresses. Thisg is indirectly confirmed
by the fact that the accident was caused by buffeting
since, as shown by the comwnutations, in buffetiug the
flexural vibrations predominate. -

IV, EXPERIMENTAL INVESTIGATIONS OF BUFFETING

IN.- THE LABORATORY AT HIGH REYNCOLDS NUMBER

Buffeting investigations were carried out in the wind
tunnel on a model of an elastic tail placed in a disturbed
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"flow behind the wing. Tue tests ~vere condvcted both on

ail isolated wing and on a combiunation of wiag and fuselage.
The model tail surface was a siungle spar airfoil of sym-
metric sectioa. As may be seen from the gsketch (fig. 8),
it is assembled in several sections in such a manner that
the entire load is taken only by the spar with the skin
teking no load. The model was, moreover, designed in two
variantsg which differed only in the material of the spar,
one being of steel and the other of duralumin. This model
design was chosen with & view to the requirement, not only
of fixing the frequency of vibration dbut also of determin-
ing the order of aerodynamic loads actiug on the tail sur-
face. As has already been pointed out, the ianvestigations
of foreign laboratories suffered from the fundamental de-
fect thet they made use of a detector which having elastic
properties very dissimilar to those of the wing could not
yield any ianformstion with regard to the load. Ia our .
case this problem was solved, though very approximately,
without disturbing the accuracy with respect-to the fre-
guencieg. Tais i1s entirely understandable since tails
working in the region below the stalliang velocities will
have no free vibrations, but will accurately follow the
forced frequencies.

The dimensions of the tail surface are indicated on
fignre 8. The fuselage was schematically represented by
a flat bvoard 30 millimeters thick which was attached
directly to the wing forming a right-angle joint.

In order to include the basic practical operating
conditiong, five such board fuselages were coustructed
by which settings were obtained to correspond to the angles
of attack of the wing of 0.5% 109 15% and 20°. Moreover,
such fuselages, not having any elastic connection with the
tail, made possible the deterwination of only the purely
aerodynamic effect of the fuselage on the tail.

A sketch of the setun is shown on figure 9. The ver-
tical mnosition of the tail ras chosen after a special test
in which the a.wmlitudes of vibration of thes tin of tae
tail ‘wvere observed for varlious vertical vositionsg of the
tail surface. The plane of the upvner edge of the wing
gave the maximum amnlitude. This agrees entirely with the
results of Duancan and the tail was therefore set at the
level of the upper edge of the wing.

*
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Test Procedure

The object was to determine the freguency and ampli-
tude of the tail vibration. The problem of the choice of
any particular method of obtaining the fundamental param-
eterg depended naturally on the character of the vibrations
themgelves, that is, whether regular or irregular, observa-
ble with the naked eye or not, and finally, on the number
of degrees of freedom possessed by the tail. For this
purpose, the vibrating tail was observed by strobosconic
illumination. It was found that by a corresoondirng choice
of the stroboscope fregquency the vibrations could be com~
pletely determined. Moreover, it was found that the tail
in the disturbved flow vibrated with considerable amplitude,
the vibrations being ovurely flexurael up to a certain defi-
nite velocity and after this velocity had oeen reached,
being accompanied by torsional vivrstions. Thig made it
possible to photograph the tail surfece and to determine
the maximum amplitudes from the film. In this way, rather
simple and at the same time, gufficlently accurate appara-
tus was chosen for measuring the fandamental parameters;
namely, the rotoscope for measvring the frequencies and
the uvusual photographic avnparatus for the amplitudes.

Results of Qugservations

The observations showed thet at all angles of attack
of the wing wlhien there was no separation of flow the tail
did not vibrate. For the case of an isolated wing, for
example, the tail vibrations started at ay > Oy cpre In
this case the tail vibrated at all flow velocities, in-
creasing with increase in the latter, the vibrations being
predominantly flexural. Torsional vibrations arise only
when the frequencies of the flow approach the flexural
freguencies of the tail, there being practically no tor-

sional vibrationg up to this moment, as was shown theo-
retically,

Figure 10 ghows the curves of freguency against
velocity. As may Dbe seen, the points with sufficient
accuracy lie on a straight line. It should be noted that
the straight line of Vv assainst V does not pass through
the origin of coordinates. This shows that at small veloc—
ities the law of variation of V with Vv will be differ-

ent than in the given case. We shall write the eguation
of this straight line

V=V, + k(V~ Vg)
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where Vg, Vo are the initial frequency and velocity of
the flow.

Dividing both sides of the equation by V we obtain

v
Yo Yo . Lo
v v v

from which it is seen that for large values of the veloc-
ity the ratio V/V is siwmply equal to X, the slope of

the line. From the wvalue of Xk taken from the curve of

figure 10 we compute Sy = 0.1l. For actual landing veloc
ities the value of §4 may be taken approximately egual

to 0.115 = 0.12. It is evident that these results may be
made more accurate when tests for the determination of

Sty are conducted for a large number of full-scale wings.

On figure 11 is vlotted V/V against V. The fact
that the measnrements obtained by the strovoscopic method
gualitatively agree with the results of otner authors
lends suoport to the assumption of full periodicity of
the disturbance forces behind the isolated wing. Thisg isg
a very importsnt fact for the problem of buffeting. If
the forces were not periodic it would not have been pos-
sible to appiy the stroboscome which operates according
to the harmonic law. Logically, it could not be expected
otherwise, for with a given wing and at a given velocity,
that is, for constant conditions of stall, the time re-
guired for the full §stalling process should not change.

"The curves of change of ampnlitwde with velocity con-
firm tke conclusions previously drawn since all the curves
show definite resonance states as would be imnossible in
the case of irregularity of the disturbance forces since
the natural tail vibratioans are harmonic.

Figure 12 shows the curve of amnlitude agaisnst veloe-

ity for qy = 269 amnd o4 = 0, 5% and 10°. The curves
for a4y = G and 5° are of a character corresponding to
the general tLeory of forced vibrations. TFor ay = 10°

the curve differs sharply from the preceding since the
stalling noint is at a, = 11°. It aopears that a change
in angle. of attack in the wake vehind the wing alternately .
brings the wing from the condition above to the condition
below the stall, and this explains the arbitrary character’
of the curve.
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Figure 13 likewise shows a2 sharp difference ian the

behavior of the curves for af = 0° and oy = 100.
Whereas for O = 0° the amplitude curve has its maximum
value; its miniwmua value is «g = 100, This is apparently

due to the decrease in the amplitude of the forces acting
on the tail as a result of the transition of the tail sur-
face to the conditiong beyond the stall. Figure 13 shows
the results characteriziug the behavior of the tail Dbe-
hind a wing with larger chord than for the firgt case,
that is, figure 14. For this reason, resonance 1is reached
at larger values of the velocity. Pigure 14 shows com-
parison curves for two tail surfaces with different stiff-
ness. Thege curves show that a simple change in the
stiffness not only changes the numerical value of the
anplitudes but also sharply w:0difies the character of the
vibration. For thig reason, the quesgtion of stiffness 1is
of fundemental importance in the buffeting theory.

An iacrease in the wing dimensions and in its angle
of attack has a great effect on the amplitude of the vi-

brations. Ficure 15 gives the results of tests on a wing of
chord 0.63 meter at oy = 30° (tail with steel spar) which

skow that the increase in the ammlitude with the velocity
follows,approximately,the ctbic law.

Combination of Wing and fuselage

As has already Dbeen stated, boards attached to the
wiang forming a right-anzgle intersection were used as fuse-
lages, five fuselages being used to form models with wing
angle of attack of 00, 5°, 109, 159, and 20°. Thig made
it possible to include the entire range of practical
angles of attack.

From the work of a number of authors it has been
establigshed that the initial separation of the flow due
to the interference between the wing and fuselage often
starts at a wiug angle of attack of 29 to 3° in the case
of intersections without feirings. We were guided by
these factsg in choosing stica a number of angles of attack
for investigation.

When the tests were begun it was found thaet up to

Oy = 159 inclusive, the tail surface does not vibrate and
the silk string shows the absence of sevaration at the
intersection. Only at oy = 159 and at large velocities

ig there formed at the wing and fuselage intersection a
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small breakdown region and slight vibration of the tail.
This is ‘explained, evidently, by the straight line char-
acter of the contour of our fuselage, that ig, by the
absence of a pressure drop in the flow along the fuselage.
The fuselage and wing having different profiles form dif-
ferent velocity vectors at the same points of space in
the region of the intersection. Thisg leads to a disturbd-
ance of the smoothness of the flow about the wing and
fuselage. In our case, the fuselage, not having any pres-
sure gradient and hence variable velocities along the
contour, does not disrupt the flow at the wing. We speak
here of the outer flow, of course, as the boundary layer
in the region of the juncture undoubtedlv increases in
thickness in the flow direction, dut this,evideantly, for
such type of intersections, plays no important part uo to
stalling angles of attack. For oy = 200 thne tail
vibrates, as in the case of the isolated wixzg, in the
range beyond the stall.

Figures 10 to 16 show the frecuencies and amnlitudes
plotted againgt tie velocity in comparison with the same
curves for the isolatesd wing. As may be seen, the very
interesting result is obtaiued that while the frequencies
are not affected by the presence of the fuselage the
amplitudes are strongly decreassd. Thls means that the
fuselage acts as a damving device for the tail. Thus
the presence of the fuselage itself, from the point of"
view of buffeting, not only plays 2 negstive pvart, creating-
vortices at the intersection but also a p031t1ve part in
damping the v1brat10ns. .

V. PORCES ACTING ON THE TAIL-IN BUFFETIXNG

We shall try to answer the question with regard to
the loads to which the horizontal tail surface is subjected
in buffeting. We shall first comnsider the following simple
problem. Let a single wortex with circulation ' and with
a forward velocity equal to the flow velocity move in an
infinite ideal flow about a horizontsl tail of constant
chord. Assuming the path of the vortex as a straight line,
the scheme will be that sghown in figure 17

where
0 is the initial position of the vortex

S¢ the distance of the tail from the point O 4in the
flow direction
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h is the distance of the tail from O along the vertical

o]

S the running coordinate of the vortex

The vortex will, of course, induce at the tail the
velocity vector AV which will vary both in magnitude
and direction in the course of motion of the vortex. It
is required to find the 1ift force on the tail in this
case.

We consider the expression for the 1ift in the gen-
eral case of forward motion. The 1ift, 2s is known, is
given by

X

N 1Tt C d(VO,) 2 _ alf u(ﬁ)dﬁ J .
P = 7 lt-t - * 4V ) TR TR i o o) (34)
o]

where u(B) is the intensity of the vortex sheet spring-
ing from the trailing edge and generated by lines of
velocity discontinuity. In the case of nonstatilonary
motion the circulation at the tsil varies and therefore,
in order to gatisfy Kelvia's theorem of the constancy of
the circulation in time, it is necessary that a vortex

be ghed with circulation equmsl to the increment in circu-
lation about the tail but of opposite sign. Schematically
this may be represented as shown in figure 18, where

X, 1s the starting point of the nonsteady motion
z the distance traversed after the atart of the motion
B the running coordinate

Formula (34) thus congists of two parts: namely,
the Joukowsky terms and the terms due to the nonstationary
character of the motion. As shown by Wagner (reference
11), the value of the latter integral is small by compari-
son with the remaining terms and may be neglected without
too great an error. Moreover, it always mcts to reduce
the total 1ift force so that neglecting it will be on the
favorable side ag regards the wing strength.

In general, wu(B) 1is found from the solution of an
integral equation of the form
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Ysinas= %? 2 l4t§£5g (B)ag
~ x— B
0
It remains to consider the term Jlggil. We write it
in the Torm
a(Va) _ . da av -
—ar " V@ t%ar (55)

-

Assuning the velocity of the flow constant we obtain

fglﬁil = v da
aT aT

The 1ift force will then be

It is necessary to determine — . From a consideration

of figure 17 we may write

AV cosY AV(Sy, — S)
Q = = = = 36
v V./8o =67 +hy= (38)
tut -
AV = o = L . . (37)
mr o AS, — 5)% +hy?

Substituting the above in (36) we obtain

T So— 8
@ = S . (38)
BTTV (SO i S) + 110
whence
-~ g2 _ _g)2_p. 2745
da _ T .[ '2(80 S) (SO S) hO J aT

aT 2V [(85—8)°+ ho=i®

out QE = V.
dr



NACA Technical liemorgndum No. 1041 33

da T (So ~8)% - ho®

a7 T 2n [(So = 8)° + no=l? (39)

Since ve are interested only in the maximum value of the
1ift force we shall find the value of § for which

Ko

aT
(39) with respect to S denoting %% by o

will be a maxlimum for which purpose we differentiate

as
as

T —[(8o=8)?+hy122(8,~5)+2 [(5,=5)2+ho2]2(8,~8) [(8,—5)%~ne?]
2 [(S,—5)2+n,°]*

Equating the numerator to zero we obtain

[(80—58)%+ns® 12(8~8)=[(8,~5)?~h?Ja[(S,~5)%+h 2] (5 ~8)
(8,5-S)P+ho® =2(8y—8)"~2hy?
S ,~5= %43 n (40)

Substituting (40) in (39)

/Ao r

. = T (41)
\aT/ . 16wh,?

But I is connected with the angle of attacl by the
following expression

(85—S)%+hy"
I's 20 Vo (22)
SO—S

whence

r= 87 vy o (43)

0
3
Substituting the above in (41)

'gg\ ) 1

—— Vo (44)
AT/ max zvf he

T = » -
Ihe expression for the maximum 1ift force is written as
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t
P = ﬂi(w?a T e — >= ot V30 + —=— prrt T2 (45)
8,,/_3 ho

max 4 va_ho

£\
Pmax = Pst <1 + E—J: T/ (486)

where Pgt 1is the 1ift for steady motion,

The result is thus obtained that the 1ift of the

tail depends on the distance from the vortex lines, The
nearer the taill is to the vortex lines the greater the
1ift force on it for the sanme angle of attack. It is
clear that the case hg = 0 has no immediate physical
significance es the tail can never be situated in this
position in view of the fact that the tail in turn induces
at the vortex a velocity which causes the vortex to deviate,
a fact which for simplicity we neglected to take into con—
sideration. Figure 19 shows the curves of vibration am—
plitude against the vertical position of the tail., It is
seen that the maximum deviatlions lie in the plane of the
upper edge of the wing in the flow direction. This may be

explained by the fact that the vortices shed from the
upper edge of the wing travel approximately in the same
plane, a fact which well confirms the assumpition made,

On the basis of the obtained formula and the experi-—
ments of Duncan it may be stated that the separating vor—
tex travels along a practically straight line, The dif-
ficulty may arise that vortices are shed not only from
the upner edge of the wing but also from the lower but no
such increase in the amplitude of the vibration is obd—
talned in the plane of the lower edge. The reason is that
the vortices springing from the upver and lower edges do
not produce the same effect on the tail. Eaving oppositely
directed circulations one of the vortices acts to reduce
the dynamic load while the other acts to increase it. The
theorem is proved in mechanics that for dynamlc loading
the deformations may attain double the value of those for
static load but for dynamic unloading they can never exceed
the static load deformations. In general the tail may be
loaded not only by the vortices springing from the upper
edge but by those from the lower edge depending on the
angle of attack of the tail itself, In the given tests due
to the downwash of the flow behind the wing the tall was at
a negative angle of attack., Hence it would be more correct
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i to say that the line of dangerous buffeting lies in the
Plane of the edges-of the wing 1f it is assumed that the
vortices travel approximately in these planes in the flow
direction.

"Figures 20 to 26 give the force curves obtained from
the tests., As has already bean pointed out the maximunm
value of the deflections was determined by a photographic

camera and from these values the forces were determined
o0

by formula (23). Setting k(x) = A FZ we obtain
. b _ (oA
i ]
3 1 7 y 2 ~ o =2 dC 2 2
.’ g, EI< -d:—%%l dx LoV [t £2 (x)dx
. 5 X o 0
| ym-/—m(x)f“(x)dx —w=2 +| = &
; S m(x)f?(x)dx gym(x)fz(x)dx /
‘ o}
(x)= -
[
} £(x) p2v/ t(x)f(x)dx

whence

AP = k(x) pVZ®syt

where St 1is tne area of the tail surface and yp the

measured amplitude of the tip of the tail. We make use
of nondimensional coefficient

C = AP = k(x) i00 vercent
¥2S C
ymax " E Ymax

The curves show that the variation of the acﬁing
forces vith the velocity for all cases considered is sub—
Ject to a definite law. The coefficient C gssumes vari—
ous vaglues not always regular. Thig is-explained partly
by the fact tlrat a2 sinusoid does not accurately represent
the actual character of the varying forces which act im—
pulsively and strictly speaking should be represented by
a Fourier series. ASs may be seen the owvenrloads may reach
100 percent and more depending on the characteristics of
the wake and the angle of attack of the tail. Theoreti—
cally the overloads can be of any order of magnitude from
0 to . The theory is here important on account of the
fact that it gives an explanation of the causes giving

&

T e Y

S ieega
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rise to these loads since the results of the usual wind
tunnel tests and of the Joukowsky theory do not throw any
light on the causes giving rise to these overloads. A
fundamental factor the effect of which is considered by the
theory here presented is the rate of change of the angle

of attack of the tail. A vortex traveling toward the tail
does not simply vary the angle of attack but does this at

a definite rate which 1g determined by the magnitude of the
flight velocity, the circulation of the vortex and the dis—
position of the tail surface relative to the vortex path,
The physical theory concerns itself with the explanation

of the effect of these factors, The infinite increase in
the force for hg = 0 must be considered as the maximum

overload of the tail surface in this position, similar to
the infinite velocity at the sharp edges in the case of
the wving theory.

CONCLUSION

We have considered a very simplificd scheme of a com—
Plicated phenomenon which is often a source of worry to
designers and which up to the present has received no
fundamental solution. In this very simple scheme it was
found that the isolated wing gives rise to purely periocdic
disturbances which can be represented by a simple series
of trigonometric functions., It is shown that the tail too
vibrates periodically with amplitudes increasing with the
velocity corresponding to the laws of the general thecory
of forced vibrations in a resisting mediun,

Consideration was given to the character of the loads
to which the tail surface was subjected in the wake of the
wing., It was found that they are fundomentally determined

by

a) Yhe ratio of the frequency of the flow to the
natural frequency of the tail surface;

b) The magnitude of the flow velocity

c) The vertical position of the tail surface rela—
.tive the wing

d) The amplitude of the disturbance forces
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Depending on the character of the combination of all
these factors the tail may be brought into a critical
buffeting condition and in this connection the conclu—
sion of Blenk with regard to the impossibility of fail-
ure of the Junkers Ju 13 due to buffeting does not appear
to be an entirely justified assertion. At the value S; =

0.12 obtained in our tests the Junkers alrplane was in a
resonance state at large velocities, that is, simultancous
action of thce above factors a and - b was obtained.

M The actual character of the toil vibratlion on a rcal
talrplane is very complicated, a fact which is quitc under—

e

istandable since 1t is not a question of the tail vibra—
§§ions alonc but of the vibrations of the complete mechani-
leal system including a very large number of the structural
‘details.

The imporbant question is how to eliminate buffeting
on the actual airplane. Experiment shows that a very
large number of structural details of a size comparable
with that of the tail surface may form a disturdbing wake
acting on the tail surface and giving rise to buffeting
at various velocities of the airovlane. The factor of
comparable size is here emphasized "since for some reason
it is customary to assume in usual practice that even a
small bolt on the upper surface of the wing may give rise
to dangerous buffeting, In 2 wind tunnel at a, = 10°

gmmi &= 1

on a wing of 600—millimeter chord plastic objects of
various shapes of dimensions 100 to 150 millimeters were
attached and no buffeting was observed., This is explained
by the fact that the frequencies of the vortices spring—
ing from such small objects many times exceed the natural
freguency of the tail and their amplitudes in the first
place are suall in magnitude and in the second place do
not reach the tail, being dissipated completely by diffu—
sion. In order to check this the following test was made.
A plate of 125 millimeters WwWidth was placed ahead of
the tail the latter vibrating with appreciable amplitude.
These vibrations decreased with increasing distance from
the plate and at a distance of about 1 millimeter from the
tail they vanished completely.

Thus in considering the origin of the buffeting it
is neccessary to pay attention to structural details of a
greater order of magnitude than small excrescences. If
buffeting occurs in landing the source of the troudble in
most cases is to be found in the wing attachment to the
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fuselage. The-measures to be taken for eliminating buf-—
feting in this case are well known to all designers (the
use of various kinds of a fairings, slats, flaps, stc., the
action of which leads either to a suppression of the flow
breakdown at the intersection or to a reduction of the
likelihood of resonance between the vortices and tail.

It is here necessary to bear in mind first that fillets
often have an unfavorable effect on the speed characteris—
tics of the airplane, and secondly that buffeting arising
in the presence of fillets often is more dangerous than
without them, This is well illustrated on the curves of
Duncan (fig., 27) which give the changes in amplitude for
various combinations of fillets with other types of de-—
vices,

In general the means taken for eliminating buffeting
may be classified into three groups:

1. Removal of the causes producing buffeting, that
is, avoidance of the possibility of flow breakdown at the
wing.

2. Location of the tail in the least dangerous posi—
tion.

3. Change in the elastic properties of the tail so
that its natural fregquencies will not be resonance fre—
guencies.

The first grcup-has already been discussed. The
second group requires that the tail surface be located
as far as possible from the path of the vortices which
lie approximately in the plane of the wing edges. This
can always be done by sketching the path of the vortices
on the drawing for various angles of attack and taking
account of the actual conditions of flow about a given
wing system.

The means for eliminating buffeting included in the

" third group are very often applied in practice in the
final design of an airplane. It 1is necessary in many
cases to vary the postion of the tail surface several
times or strengthen it by various supports which is often
done blindly without any preliminary computations, The
values of OS¢ given in the present paper wouwld seem to
offer a certain usefulness to the desligner by enabling him
to determine in advance the regquired order of natural
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frequenciles of the tail surface, that is, its elastic
properties. )

T Pranslation by S, Reiss,
National Advisory Committee
for Aeronautics,

10.
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